Portugal Clinical Scholars Research Training Program

Refine your patient-oriented research skills and improve understanding and interpretation of medical literature.

APPLY AT HMS.HARVARD.EDU/PTCSRT
The Harvard Medical School Portugal Clinical Scholars Research Training (PTCSRT) program is a two-year program in clinical and epidemiological research training. The program is designed for scholars who would like to develop and refine patient-oriented research skills, as well as for practicing clinicians who wish to improve their understanding and interpretation of the medical literature.

The PTCSRT program delivers a comprehensive curriculum on the core theoretical and practical skills necessary to perform clinical research. Our learning model utilizes a combination of online instruction, interactive webinars and short, intensive workshops. Each component is delivered by leading Harvard clinical research faculty. The blended learning approach allows students to acquire information individually and at their own pace, while the in-person elements promote team-based learning and facilitated problem solving. The emphasis on teamwork persists throughout the program, and is designed to promote skills in collaboration and networking, which are critical for success in contemporary clinical research. Relevant modules are supported with examples and hands-on training in statistical programming using Stata software.
Program Objectives

AFTER COMPLETING THIS PROGRAM, SCHOLARS WILL BE ABLE TO:

1. Develop detailed and feasible research questions
2. Design appropriate studies and testable hypotheses for clinical questions
3. Analyze, interpret and present clinical research data
4. Develop skills in networking and collaboration

“During PTCSRT I learned how to build a good project, ask a good research question and the methods to answer it; how to write a competitive grant application, to properly write and analyze a manuscript, and how to perform my own statistical analyses. It was an amazing experience, which enabled me to grow scientifically and establish a strong network with other young doctors.”

INÊS LAÍNS
Research Fellow at Massachusetts Eye and Ear, Boston Faculty of Medicine, University of Coimbra, Portugal Coimbra University Hospital, Coimbra, Portugal
Curriculum

KEY FEATURES

• The blended-curriculum will be delivered via a mixture of recorded online lectures (ROLs), interactive webinars and seven intensive, 2-day, residential workshops over the two years of the program.
• Leading clinical research faculty from Harvard Medical School, and T.H. Chan School of Public Health.
• Recorded online lectures (ROLs), available 24/7 throughout the program, are used to deliver the educational material for each module.
• Contemporary pedagogical approaches include ‘flipped classroom’ methods, team-based learning and development of critical thinking skills.

PROGRAM ELEMENTS

• WORKSHOPS: Each workshop will be focused on the development of practical skills in clinical research. Particular emphasis will be placed on manuscript writing, research proposal preparation, biostatistical programming and critical thinking skills.
• RECORDED ONLINE LECTURES: Recorded online lectures (ROLs), available 24/7 throughout the program, are used to deliver the educational material for each module. In the first year a foundation course will introduce medical statistics and epidemiology, covering basic concepts in descriptive statistics, inferential statistics and study design. In the second year, the curriculum will focus on advanced epidemiology, including causal inference and advanced study design, as well as developing advanced concepts in biostatistics.
• ELECTIVES: There will be a choice of electives for students during the summer months (July and August) of each year. For first year students, the choice will be between clinical trials or advanced quantitative methods; for second year students, the choice will be between drug development and safety, or genetic epidemiology.
ELECTIVES

There will be a choice of electives for students during the summer months (July and August) of each year. For first year students, the choice will be between clinical trials or advanced quantitative methods; for second year students, the choice will be between drug development and safety, or genetic epidemiology.

MENTORED SCIENTIFIC WRITING

During the two year program, students will develop skills in the art of scientific communication under the supervision of a dedicated mentoring committee. The task for year one students is to prepare an individual research proposal; and the task for year two is to prepare an original manuscript. It is expected that this manuscript would be submitted for publication in a peer-reviewed medical journal.

WEBINARS

The live webinars are designed to complement the learning objectives of the ROLs, providing students with the opportunity to interact directly with Harvard faculty.

MENTORED SCIENTIFIC WRITING

During the two year program, students will develop skills in the art of scientific communication. Each student will benefit from the input of a dedicated mentoring committee consisting of a primary Portuguese mentor and a Harvard advisor.

TEAMWORK

Enrolled students will be randomly allocated to teams of approximately five students each. Each team will work together on two team assignments during year one and a further two team assignments during year two.
Curriculum

FOUNDATION COURSES

Biostatistics - This course addresses how to organize, summarize and display quantitative data; and the applied use of statistical software (Stata).

Epidemiology - This course covers the basic principles and methods of epidemiology, including disease (outcome) measures, measures of association, study design options, bias, confounding and effect modification.

Biostatistical Computing - This course focuses on the basics of Stata, including learning key commands, creating do-files, organizing data for analysis, and checking for errors. More advanced lectures will focus on using Stata for regression, survival analysis and generating publication quality figures and tables.

Research Ethics - This course reviews some common challenges in the conduct and review of biomedical human subjects research, including the evolution of ethical codes and regulations, the responsibility of physicians as investigators, the preparation of research protocol applications and informed consent documents, and the challenges of conducting research involving children and adolescents.

Leadership in Medicine - This course examines different aspects of working and leading a team. Lectures discuss the need to manage a group of people effectively, pilot successful collaborations within and outside a group, navigate the complexities of the institution, and manage the inevitable conflicts that arise in a clinical research environment.

Applied Regression - This course provides an understanding of the basic principles and uses of linear and logistic regression models for clinical research.

Survival Analysis - This course provides instruction to describe time-to-event data and compare groups with a time-to-event outcome, interpret the coefficients and control for confounding using a Cox proportional hazards model, interpret interaction terms and incorporate time varying covariates in a Cox model as well as assess the proportional hazards assumption.

Correlated Outcomes - This course covers methods to analyze longitudinal data, including the use of linear regression models. Topics will include polynomial trends for time (e.g., linear or quadratic) and linear mixed-effects models. Students will be able to understand the types of missing data that occur in longitudinal and cross-sectional analyses as well as understand the assumptions associated with each analytic approach.

Causal Design - Causal inference is an overarching objective of most forms of medical and epidemiological investigation. Students will develop a deeper understanding of observational approaches, especially from the perspective of overcoming the problem of confounding. Students will develop approaches toward identifying confounders, especially via the use of directed acyclic graphs.
Faculty

PROGRAM DIRECTORS

AJAY K. SINGH
MBBS, FRCP, MBA
PTCSRT Program Director
Senior Associate Dean for Postgraduate Medical Education

FINNIAN R. MC CAUSLAND
MBBCh, MMSc, FRCPI
PTCSRT Program Director
Assistant Professor of Medicine
Harvard Medical School

EMÍLIA MONTEIRO
MD, PHD
PTCSRT Program Co-Director
Associate Dean for Education
Professor of Pharmacology
Universidade Nova de Lisboa

LINO GONÇALVES
MD, PHD, FESC
PTCSRT Program Co-Director
Professor of Cardiology
Faculty of Medicine
University of Coimbra

WORKSHOP FACULTY

BRIAN L. CLAGGETT, PHD
Instructor in Medicine
Harvard Medical School
Chief Statistician
Cardiac Imaging Core Laboratory and Clinical Trials Endpoints Center
Brigham and Women's Hospital

GARY CURHAN, MD, SCD
Professor of Medicine at Harvard Medical School
Professor of Epidemiology at Harvard T.H. Chan School of Public Health

JOHN P. FORMAN, MD, MSC
Assistant Professor of Medicine at Harvard Medical School
Associate Physician in the Renal Division at Brigham and Women's Hospital

ELDRIN FOSTER LEWIS, MD, MPH
Assistant professor of medicine at Harvard Medical School
Director of the Cardiovascular Clerkship Program at Brigham and Women's Hospital

SUSAN Z. KORNETSKY, MPH
Director of Clinical Research Compliance
Boston Children’s Hospital

MELVYN A. J. MENEZES, MBA, PHD
Associate Professor
Boston University Quelstrom School of Business

ELLEN SEELY, MD
Professor of Medicine
Harvard Medical School
Vice Chair, Faculty Development
Director of Clinical Research, Endocrinology, Diabetes and Hypertension Division
Brigham and Women's Hospital
PORTUGAL
CLINICAL SCHOLARS
RESEARCH TRAINING
PROGRAM

CONTACT US

4 BLACKFAN CIRCLE
4TH FLOOR
BOSTON, MA 02115

EMAIL: ptcsrt@hms.harvard.edu
WEB: hms.harvard.edu/ptcsrt