Our innovative approach to learning incorporates traditional teaching methods with novel approaches to pedagogy. The core curriculum is specifically designed to ensure the seamless integration of core learning objectives across modules while allowing students to simultaneously master the practical skills that accompany these important concepts.

With teamwork and collaboration bing critical ingredients in scientific discovery, this program provides the needed skills, team-work experience and unparalleled teaching in leadership and management skills as they relate to clinical research.

The Master of Medical Sciences in Clinical Investigation curriculum uses interactive classrooms, case-based learning, group projects, real-world lab experience and a mentored clinical research project specifically designed to enable students to:

  • Master core topics in patient-oriented research;
  • Apply new knowledge to real-life examples;
  • Develop and execute his or her own research proposal;
  • Impart their findings to the scientific community

The MMSCI program provides either a choice of the Clinical Investigation (CI) track with one of two optional pathways for individualized learning or the choice of the Translational Investigation (IT) track.

Clinical Investigation Track

This track is co-led by Finnian R. Mc Causland and Ajay K. Singh, who both have extensive experience in observational research and clinical trials. The Clinical Investigation track allows customized learning for students through the pursuit of either a comparative research pathway or a clinical trials pathway. Guided by a dedicated thesis committee, each student must complete two first-author manuscripts (one published and one submitted in a peer review journal) based on the work from their individual research projects. The innovative curriculum is specifically designed to deliver the theoretical and practical skills that will complement a mentored clinical research experience.

Translational Investigation Track

This track is co-led by Harvard Medical School faculty Rosalyn Adam and Martina McGrath, who both have extensive experience in bench and translational research. The Translational Investigation track aims to fill an unmet need in providing training for individuals pursuing a career in basic and/or translational research (i.e., in the T0 to T2 spectrum of translational investigation). Incorporating the translational track within the MMSCI program is consistent with the overall goal to train future global leaders in clinical and translational research. Bringing together students and faculty interested in clinical and translational investigation will ensure diversity of experience, skills and ideas, while promoting collaboration across the spectrum of clinical and translational research.

Program Tracks Overview with Ajay Singh
Overview of Program Tracks with Ajay Singh
  • Learning Model

    • MENTORED RESEARCH EXPERIENCE: The core feature of the MMSCI program is the mentored research experience in a Harvard-based research group. During the two years of the program, under the guidance of a primary mentor and dedicated thesis committee, each student is required to develop and execute research projects. To graduate, students must submit and defend a thesis based on their mentored research experience. This should take the form of two original manuscripts (one accepted and one submitted) in which the student is first author.
    • INTENSIVE WORKSHOPS: The central pillars of the MMSCI program will consist of three intensive workshops and didactic sessions that are complemented by journal clubs, office hours, computer laboratory classes, team-based projects and presentations.
    • LONGITUDINAL TEACHING: Between each workshop, further exploration of contemporary research topics will occur at weekly interactive sessions. Novel pedagogic approaches for this longitudinal series include the use of “flipped classroom” methods, where students review and dissect learning material in advance of facilitated discussions.
    • CONTEMPORARY TOPICS IN CLINICAL AND TRANSLATIONAL INVESTIGATION: The seminar series is designed to complement the didactic and longitudinal curriculum through team-based database analysis: presenting the data in figures and tables in various formats (poster, short presentation and a research presentation), as well as “state-of-the-art” talks.
  • Core Courses

    Clinical and Translational Investigation Thesis Preparation

    During the course, learners work with their mentors on two thematically linked research projects, which form the basis for two first-author publications, or a body of work. The Clinical & Translational Investigation Thesis Preparation course provides guidance on topics critical to the preparation and presentation of the written and oral forms of the thesis defense. Topics include a review of analytic strategies for qualitative and quantitative data, presenting skills for qualitative and quantitative data, writing an academic paper, writing an op-ed (opinion) piece for the popular press and tips for writing and grammar. Weekly writing advising allows students to receive continuous feedback on their thesis composition.
     
    Clinical Data Science: Design and Analytics I

    This course introduces methods for the generation and analysis of data for clinical research through the seamless integration of epidemiology, biostatistics and machine learning. The course is structured in three components that correspond to the three main objectives of clinical research: description, prediction and causal inference. The descriptive component introduces different data types and study designs, summary measures (including frequency and occurrence measures) and statistical inference (hypothesis testing and confidence intervals). The predictive component introduces association measures, regression (linear as well as logistic) and other learning algorithms with applications to screening and clinical classification. The causal component introduces a causal inference (counter-factual) framework via randomized clinical trials, which covers survival analyses, sample size calculation, biases and effect heterogeneity. The course emphasizes critical thinking and practical applications, including assignments based on articles published in medical journals and a case study each week. All methods are taught along with STATA and R software to implement them.

    Leadership and Teamwork 

    This course will examine the different aspects of working with, managing and leading a team. Lectures will discuss the skills and techniques that are needed to manage a talented group of people effectively, pilot successful collaborations within and outside a group, navigate the complexities of the institution and manage the inevitable conflicts that arise in a high-stakes environment.

    Ethics and the IRB (Institutional Review Board) 

    This course will examine the regulatory and ethical oversight of the history and evolution of ethical research codes and regulations. The role and responsibility of physicians as investigators will be discussed, and information about the preparation of research protocol applications and informed consent documents for clinical research will be provided. The course also will review some timely and common challenges in the ethical conduct of patient-oriented research, including recruitment, issues related to vulnerable populations and current topics such as biobanking and the use of social media in research. The curriculum also includes the importance of considering the perspectives of subjects and patients in clinical research. Students will be educated about their regulatory and moral responsibilities to increase transparency within the clinical research environment through lectures on the importance of clinicaltrials.gov and data sharing. The course will include didactic and group work that will emphasize critical thinking and practical application of ethical considerations while developing and implementing patient-oriented research.

    Genetic Epidemiology

    The goals of this course are to provide clinical researchers with the skills to: address opportunities to incorporate genetic studies to answer specific research questions; understand basic genotyping techniques, as well as the basics of genetic study design and analysis; identify and use publicly available databases for genetic research; and understand the principles of ethical conduct in genetic research.

    Mentored Research Experience 

    During the mentored research experience, each student will have the opportunity to take the lead on clinical research projects in their areas of interest. Working in a Harvard-based laboratory, under the direct supervision of a primary mentor, each student is required to complete a thesis at the end of the program. The purpose of this requirement is twofold: to highlight the importance of publishing quality research in peer-reviewed academic journals and to promote excellence in the practice of scientific communication. Additional guidance and oversight are provided to each student by a thesis committee, which consists of the student, the primary mentor, one external member (i.e., someone who is not in the student’s primary laboratory and who is not directly involved in the student’s research) and an MMSCI program representative.

    Critical Investigation Curriculum

    Clinical Data Science: Design and Analytics II

    This course will extend the topics introduced in Design and Analytics I for each of the three goals of clinical research: description, prediction and causal inference. The description sessions discuss data wrangling, data visualization and unsupervised learning with a focus on clustering. The prediction sessions discuss the building and evaluation of predictive models via regression and other learning algorithms. The causal inference sessions discuss the advanced design of randomized clinical trials (factorial, non-inferiority, adaptive, crossover and cluster-randomized clinical trials) and evidence synthesis using meta-analysis. 

    Clinical Data Science: Comparative Effectiveness Research I 

    This course will introduce causal inference methodology when randomized clinical trials are not feasible. The course focuses on the use of epidemiologic studies, electronic health records and other big data sources for comparative effectiveness and safety research. Key concepts of bias, such as confounding, selection bias and measurement bias, are described via causal diagrams. Methods for confounding adjustment, including stratification, outcome regression, propensity scores, matching and standardization, are introduced along with an emphasis on formulating well-defined questions in clinical research.

    Clinical Data Science: Comparative Effectiveness Research II

    This course will extend the topics introduced in Comparative Effectiveness Research I. The course covers efficient epidemiologic designs such as case-control, case-cohort and case crossover. It also dives into advanced methods for confounding adjustment (inverse probability weighting and parametric g-formula) for the comparison of sustained treatment strategies and instrumental variable estimation. The course also covers techniques for the secondary analysis of randomized clinical trials in the presence of deviations from protocol.

    Drug Development, Safety and Translational Pharmacology

    This course will include topics such as: How Are Drugs Discovered and Developed, Case Study of the Pre-Clinical Stages of Drug Development, Moving a Compound through the Drug Development Process, Good Manufacturing Practices—A Global Perspective and Overview of Diagnostic Device Development.

    Clinical Trials
    The goals of this yearlong series, comprising two semester-long courses, are to develop a deep understanding of how clinical trials are conceived, funded, developed (including protocol development and, in the case of industry trials, the industry approval process), conducted and closed out. Key topics will include different trial designs (adaptive, point-of-care, pragmatic designs, etc.), trials in different settings (emergency, pediatrics, cancer, biomarker, device, etc.), statistical monitoring of trials, safety issues, secondary analysis of clinical trial data, committee organization and management, advanced ethics, post-marketing surveillance studies and writing up trials for publication. Practical examples mixed with theory will be emphasized.

    Translational Investigation Curriculum

    Investigative Models for Translational Research

    This course will introduce the range of investigative models within the translational research spectrum, with emphasis on the advantages and disadvantages of each system. Introductory sessions focus on developing well- designed research questions and selecting appropriate analytic methods to interpret results. The course will consider both discovery-based hypothesis generating as well as hypothesis-driven mechanistic studies, illustrating each with case studies. Participants will learn about the various types of model systems used for translational research, from in vitro and ex vivo approaches to the use of animal models and human biospecimens. Lastly, commonly used bench techniques will be discussed. At the conclusion of this course, participants will have an appreciation for where translational investigation fits within the research spectrum.

    Systems Biology and Omics Analysis

    The goals of this course are to introduce participants to fundamental concepts in systems biology and to provide a basis for experiments that generate large genomic, transcriptomic or proteome datasets. An introduction to gene expression and gene regulation is followed by an exploration of experimental design for the generation of large datasets and their integration using systems biology principles. Mass spectrometry-based proteomics and related technologies are discussed in the context of biomarker discovery and the course concludes with an investigation of the microbiome and its relevance in health and disease.

    Cell and Molecular Biology in Medicine

    The goal of this course is to provide translational investigators with a broad understanding of the fundamental processes that drive cell function in health and disease. An overview of cell biology is followed by an introduction to specific cell functions that play key roles in disease processes, including inflammation, angiogenesis, wound healing and fibrosis. The innate and adaptive arms of the immune system are covered, with a focus on cutting-edge techniques for immunological investigation. Specific disease entities, including diabetes, cancer, cardiovascular and neurodegenerative diseases, are explored as examples of studies in cellular and molecular medicine. Case studies will be used throughout to illustrate key points, and the course will conclude with a discussion of the therapeutic exploitation of cell biology in the pursuit of precision and personalized medicine.

    Translating Innovation into Practice

    This course is designed to provide learners with an introduction to the process of translating research innovations into clinical practice. It will examine the design of first in human studies, the process of filing patents, and the regulatory process to bring innovation to the clinic. Securing funding through industry networks, and how to approach commercializing a discovery are also covered, with case studies throughout.

  • Academic and Attendance Requirements

    In order to graduate with the degree of "Master of Medical Science in Clinical Investigation", students must fulfill all of the program’s academic and attendance requirements, including completion of the 64-credit curriculum and a successful oral thesis defense (two first author original manuscripts; one accepted submitted and one submitted to a peer-reviewed journal). The MMSCI degree will not be granted to any student who is not in good standing or against whom a disciplinary charge is pending. In addition, a student’s term bill must be paid in full before he/she will be awarded the degree.

    A more detailed look at the HMS academic and financial policies can be found in the Student Handbook.

    Evaluation of Didactic Components

    Students receive a final grade for each core subject module they take. This may be a letter grade or a satisfactory/unsatisfactory rating. In addition, students are evaluated throughout each course through regular homework assignments, online quizzes, class participation, and team-based projects that are presented orally and in written form.

    Evaluation of the Mentored Research Experience

    Students must meet regularly (4 times over the two-year period) with their thesis committees and submit progress reports on each occasion. The thesis committee will comprise of the primary research mentor, a content mentor approved by the MMSCI Program leadership and a MMSCI program representative.

  • Program Schedule

    THREE INTENSIVE WORKSHOPS:  The central pillars of the MMSCI program will consist of three intensive workshops at the beginning, mid-point and end of the two years. The didactic sessions will be complemented by journal clubs, office hours, computer laboratory classes, team-based projects and presentations.

    LONGITUDINAL IN-PERSON CLASS:  Between each workshop, further exploration of contemporary research topics will occur at weekly interactive sessions. Novel pedagogic approaches for this longitudinal series include the use of 'flipped classroom' methods, where students review and dissect learning material in advance of facilitated discussions.

    MENTORED RESEARCH EXPERIENCE: The core feature of the MMSCI program is the mentored research experience in a Harvard-based research group. During the two years of the program, under the guidance of their primary mentor and dedicated thesis committee, each student is required to develop and execute his or her individual research projects. In order to graduate, students must submit and defend a thesis based on their mentored research experience. This should take the form of two original manuscripts in which the student is first-author.

    Translational Investigation Track | Comparative Research Pathway | Clinical Trials Pathway